Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(1): 129-138, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36695579

RESUMO

Many promising therapeutic protein or peptide drug candidates are rapidly excreted from an organism due to their small size or their inherent immunogenicity. One way to counteract these effects is PEGylation, in which the biopolymer is shielded by synthetic polymers exploiting their stealth properties. However, these modifications are often accompanied by a reduction in the biological function of the protein. By using responsive moieties that bridge the polymer to the protein, a reversible character is provided to this type of conjugation. In this regard, the reductive-responsive nature of disulfides can be exploited via self-immolative structures for reversible linkage to aminic lysine residues and the N-terminus on the protein surface. They enable a traceless release of the intact protein without any further modification and thus preserve the protein's bioactivity. In this study, we demonstrate how this chemistry can be made broadly accessible to RAFT-derived water-soluble polymers like poly(N,N-dimethylacrylamide) (pDMA) as a relevant PEG alternative. A terminal reactive imidazole carbamate with an adjacent self-immolative motif was generated in a gradual manner onto the trithiocarbonate chain transfer moiety of the polymer by first substituting it with a disulfide-bridged alcohol and subsequently converting it into an amine reactive imidazole carbamate. Successful synthesis and complete characterization were demonstrated by NMR, size exclusion chromatography, and mass spectrometry. Finally, two model proteins, lysozyme and a therapeutically relevant nanobody, were functionalized with the generated polymer, which was found to be fully reversible under reductive conditions in the presence of free thiols. This strategy has the potential to extend the generation of reversible reductive-responsive polymer-protein hybrids to the broad field of available functional RAFT-derived polymers.


Assuntos
Polímeros , Proteínas , Proteínas/química , Aminas/química , Carbamatos , Imidazóis
2.
J Am Chem Soc ; 145(50): 27424-27436, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38054646

RESUMO

The design of functional polymers coupled with stimuli-triggered drug release mechanisms is a promising achievement to overcome various biological barriers. pH trigger methods yield significant potential for controlled targeting and release of therapeutics due to their simplicity and relevance, especially upon cell internalization. Here, we introduce reactive polymers that conjugate primary or secondary amines and release potential drugs under acidic conditions. For that purpose, we introduced methacrylamide-based monomers with pendant 2-propionic-3-methylmaleic anhydride groups. Such groups allow the conjugation of primary and secondary amines but are resistant to radical polymerization conditions. We, therefore, polymerized 2-propionic-3-methylmaleic anhydride amide-based methacrylates via reversible addition-fragmentation chain transfer (RAFT) polymerization. Their amine-reactive anhydrides could sequentially be derivatized by primary or secondary amines into hydrophilic polymers. Acidic pH-triggered drug release from the polymeric systems was fine-tuned by comparing different amines. Thereby, the conjugation of primary amines led to the formation of irreversible imide bonds in dimethyl sulfoxide, while secondary amines could quantitatively be released upon acidification. In vitro, this installed pH-responsiveness can contribute to an effective release of conjugated immune stimulatory drugs under endosomal pH conditions. Interestingly, the amine-modified polymers generally showed no toxicity and a high cellular uptake. Furthermore, secondary amine-modified immune stimulatory drugs conjugated to the polymers yielded better receptor activity and immune cell maturation than their primary amine derivatives due to their pH-sensitive drug release mechanism. Consequently, 2-propionic-3-methylmaleic anhydride-based polymers can be considered as a versatile platform for pH-triggered delivery of various (immuno)drugs, thus enabling new strategies in macromolecule-assisted immunotherapy.


Assuntos
Anidridos Citracônicos , Polímeros , Polímeros/química , Aminas/química , Anidridos , Concentração de Íons de Hidrogênio
3.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895096

RESUMO

For successful therapeutic interventions in cancer immunotherapy, strong antigen-specific immune responses are required. To this end, immunostimulating cues must be combined with antigens to simultaneously arrive at antigen-presenting cells and initiate cellular immune responses. Recently, imidazoquinolines have shown their vast potential as small molecular Toll-like receptor 7/8 (TLR7/8) agonists for immunostimulation when delivered by nanocarriers. At the same time, peptide antigens are promising antigen candidates but require combination with immune-stimulating adjuvants to boost their immunogenicity and exploit their full potential. Consequently, we herein present biodegradable polycarbonate nanogels as versatile delivery system for adjuvants within the particles' core as well as for peptide antigens by surface decoration. For that purpose, orthogonally addressable multifunctional polycarbonate block copolymers were synthesized, enabling adjuvant conjugation through reactive ester chemistry and peptide decoration by strain-promoted alkyne-azide cycloaddition (SPAAC). In preparation for SPAAC, CD4+-specific peptide sequences of the model protein antigen ovalbumin were equipped with DBCO-moieties by site-selective modification at their N-terminal cysteine. With their azide groups exposed on their surface, the adjuvant-loaded nanogels were then efficiently decorated with DBCO-functional CD4+-peptides by SPAAC. In vitro evaluation of the adjuvant-loaded peptide-decorated gels then confirmed their strong immunostimulating properties as well as their high biocompatibility. Despite their covalent conjugation, the CD4+-peptide-decorated nanogels led to maturation of primary antigen-presenting cells and the downstream priming of CD4+-T cells. Subsequently, the peptide-decorated nanogels loaded with TLR7/8 agonist were successfully processed by antigen-presenting cells, enabling potent immune responses for future application in antigen-specific cancer immunotherapy.


Assuntos
Neoplasias , Receptor 7 Toll-Like , Humanos , Animais , Camundongos , Nanogéis , Receptor 7 Toll-Like/agonistas , Azidas , Peptídeos , Antígenos , Adjuvantes Imunológicos/química , Imunidade , Camundongos Endogâmicos C57BL , Células Dendríticas
5.
Biomacromolecules ; 24(5): 2380-2391, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37093222

RESUMO

The reversible addition-fragmentation chain-transfer (RAFT) polymerization provides access to a broad variety of biocompatible and functional macromolecules for diverse polymer-drug conjugates. Due to thiocarbonylthio groups at the ends of each growing polymer chain, they can straightforwardly be converted into disufilde-containing self-immolative motives for reversible drug conjugation by traceless linkers. This may be relevant for RAFT-polymerized poly(N,N-dimethylacrylamide) (pDMA), which has been demonstrated to provide similar properties as poly(ethylene glycol) (PEG) in terms of improving the drug's poor pharmacokinetic profile or enhancing its bioavailability. For that purpose, we established a highly efficient one-pot reaction procedure for introducing various functionalities including both primary and secondary amines and primary alcohols and demonstrated their reversible conjugation and traceless release from pDMA's polymer chain end. Next, a first polymer-drug conjugate with a Toll-like receptor agonist exhibited significantly increased activity in vitro compared to conventional irreversibly covalently fixed variants. Finally, α-ω-bifunctional dye or drug conjugates could be generated by a cholesterol-modified RAFT chain-transfer agent. It facilitated the polymer-drug conjugate's internalization at the cellular level monitored by flow cytometry and confocal imaging. This approach provides the basis for a variety of potentially impactful polymer-drug conjugates by combining versatile small molecular drugs with a plethora of available RAFT polymers through reductive-responsive self-immolative linkers.


Assuntos
Polietilenoglicóis , Polímeros , Fenômenos Químicos , Polimerização
6.
Chemistry ; 29(11): e202202730, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36426862

RESUMO

Homogeneous catalysts ("mediators") are frequently employed in organic electrosynthesis to control selectivity. Despite their advantages, they can have a negative influence on the overall energy and mass balance if used only once or recycled inefficiently. Polymediators are soluble redox-active polymers applicable as electrocatalysts, enabling recovery by dialysis or membrane filtration. Using anodic alcohol oxidation as an example, we have demonstrated that TEMPO-modified polymethacrylates (TPMA) can act as efficient and recyclable catalysts. In the present work, the influence of the molecular size on the redox properties and the catalytic activity was carefully elaborated using a series of TPMAs with well-defined molecular weight distributions. Cyclic voltammetry studies show that the polymer chain length has a pronounced impact on the key-properties. Together with preparative-scale electrolysis experiments, an optimum size range was identified for polymediator-guided sustainable reaction control.

7.
Macromol Rapid Commun ; 43(19): e2200318, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35687083

RESUMO

After intravenous administration of nanocarriers, plasma proteins may rapidly adsorb onto their surfaces. This process hampers the prediction of the nanocarriers' pharmacokinetics as it determines their physiological identity in a complex biological environment. Toward clinical translation it is therefore an essential prerequisite to investigate the nanocarriers' interaction with plasma proteins. Here, this work evaluates a highly "PEGylated" squaric ester-based nanogel with inherent prolonged blood circulation properties. After incubation with human blood plasma, the nanogels are isolated by asymmetrical flow-field flow fractionation. Multiangle light scattering measurements confirm the absence of significant size increases as well as aggregation upon plasma incubation. However, proteomic analyses by gel electrophoresis find minor absolute amounts of proteins (3 wt%), whereas label-free liquid chromatography mass spectrometry identify 65 enriched proteins. Interestingly, the relative abundance of these proteins is almost similar to their proportion in pure native plasma. Due to the nanogels' hydrated and porous network morphology, it is concluded that the detected proteins rather result from passive diffusion into the nanogel network than from specific interactions at the plasma particle interface. Consequently, these results do not indicate a classical surface protein corona but rather reflect the highly outer and inner stealth-like behavior of the porous hydrogel network.


Assuntos
Nanopartículas , Coroa de Proteína , Materiais Biocompatíveis , Proteínas Sanguíneas , Portadores de Fármacos/química , Ésteres , Humanos , Hidrogéis , Proteínas de Membrana , Nanogéis , Nanopartículas/química , Polietilenoglicóis , Polietilenoimina , Porosidade , Coroa de Proteína/química , Proteômica
10.
Macromol Rapid Commun ; 43(12): e2200095, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35339115

RESUMO

Defined conjugation of functional molecules to block copolymer end groups is a powerful strategy to enhance the scope of micellar carriers for drug delivery. In this study, an approach to access well-defined polycarbonate-based block copolymers by labeling their end groups with single fluorescent dye molecules is established. Following controlled polymerization conditions, the block copolymers' primary hydroxy end group can be converted into activated pentafluorophenyl ester carbonates and subsequently aminolyzed with fluorescent dyes that are equipped with primary amines. During a solvent-evaporation process, the resulting end group dye-labeled block copolymers self-assemble into narrowly dispersed ∼25 nm-sized micelles and simultaneously encapsulate hydrophobic (immuno-)drugs. The covalently attached fluorescent tracer can be used to monitor both uptake into cells and stability under biologically relevant conditions, including incubation with blood plasma or during blood circulation in zebrafish embryos. By encapsulation of the toll-like receptor 7/8 (TLR7/8) agonist CL075, immune stimulatory polymeric micelles are generated that get internalized by various antigen-presenting dendritic cells and promote their maturation. Generally, such end group dye-labeled polycarbonate block copolymers display ideal features to permit targeted delivery of hydrophobic drugs to key immune cells for vaccination and cancer immunotherapy.


Assuntos
Micelas , Peixe-Zebra , Animais , Carbonatos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Corantes Fluorescentes , Cimento de Policarboxilato , Polietilenoglicóis/química , Polímeros/química
11.
Proc Natl Acad Sci U S A ; 119(12): e2122310119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35290110

RESUMO

Immune-suppressive (M2-type) macrophages can contribute to the progression of cancer and fibrosis. In chronic liver diseases, M2-type macrophages promote the replacement of functional parenchyma by collagen-rich scar tissue. Here, we aim to prevent liver fibrosis progression by repolarizing liver M2-type macrophages toward a nonfibrotic phenotype by applying a pH-degradable, squaric ester­based nanogel carrier system. This nanotechnology platform enables a selective conjugation of the highly water-soluble bisphosphonate alendronate, a macrophage-repolarizing agent that intrinsically targets bone tissue. The covalent delivery system, however, promotes the drug's safe and efficient delivery to nonparenchymal cells of fibrotic livers after intravenous administration. The bisphosphonate payload does not eliminate but instead reprograms profibrotic M2- toward antifibrotic M1-type macrophages in vitro and potently prevents liver fibrosis progression in vivo, mainly via induction of a fibrolytic phenotype, as demonstrated by transcriptomic and proteomic analyses. Therefore, the alendronate-loaded squaric ester­based nanogels represent an attractive approach for nanotherapeutic interventions in fibrosis and other diseases driven by M2-type macrophages, including cancer.


Assuntos
Difosfonatos , Cirrose Hepática , Difosfonatos/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Cirrose Hepática/tratamento farmacológico , Macrófagos , Nanogéis
12.
ACS Nano ; 16(3): 4426-4443, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35103463

RESUMO

The generation of specific humoral and cellular immune responses plays a pivotal role in the development of effective vaccines against tumors. Especially the presence of antigen-specific, cytotoxic T cells influences the outcome of therapeutic cancer vaccinations. Different strategies, ranging from delivering antigen-encoding mRNAs to peptides or full antigens, are accessible but often suffer from insufficient immunogenicity and require immune-boosting adjuvants as well as carrier platforms to ensure stability and adequate retention. Here, we introduce a pH-responsive nanogel platform as a two-component antitumor vaccine that is safe for intravenous application and elicits robust immune responses in vitro and in vivo. The underlying chemical design allows for straightforward covalent attachment of a model antigen (ovalbumin) and an immune adjuvant (imidazoquinoline-type TLR7/8 agonist) onto the same nanocarrier system. In addition to eliciting antigen-specific T and B cell responses that outperform mixtures of individual components, our two-component nanovaccine leads in prophylactic and therapeutic studies to an antigen-specific growth reduction of different tumors expressing ovalbumin intracellularly or on their surface. Regarding the versatile opportunities for functionalization, our nanogels are promising for the development of highly customized and potent nanovaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Receptor 7 Toll-Like , Receptor 8 Toll-Like , Adjuvantes Imunológicos , Animais , Antígenos , Imunidade Celular , Camundongos , Camundongos Endogâmicos C57BL , Nanogéis , Neoplasias/terapia , Ovalbumina , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas
13.
Macromol Rapid Commun ; 43(12): e2100892, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35174569

RESUMO

The use of nanoparticles as carriers is an extremely promising way for administration of therapeutic agents, such as drug molecules, proteins, and nucleic acids. Such nanocarriers (NCs) can increase the solubility of hydrophobic compounds, protect their cargo from the environment, and if properly functionalized, deliver it to specific target cells and tissues. Polymer-based NCs are especially promising, because they offer high degree of versatility and tunability. However, in order to get a full advantage of this therapeutic approach and develop efficient delivery systems, a careful characterization of the NCs is needed. This review highlights the fluorescence correlation spectroscopy (FCS) technique as a powerful and versatile tool for NCs characterization at all stages of the drug delivery process. In particular, FCS can monitor and quantify the size of the NCs and the drug loading efficiency after preparation, the NCs stability and possible interactions with, e.g., plasma proteins in the blood stream and the kinetic of drug release in the cytoplasm of the target cells.


Assuntos
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Polímeros/química , Espectrometria de Fluorescência/métodos
14.
Biomacromolecules ; 23(3): 1065-1074, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35061359

RESUMO

The use of nanoparticles as carriers to deliver pharmacologically active compounds to specific parts of the body via the bloodstream is a promising therapeutic approach for the effective treatment of various diseases. To reach their target sites, nanocarriers (NCs) need to circulate in the bloodstream for prolonged periods without aggregation, degradation, or cargo loss. However, it is very difficult to identify and monitor small-sized NCs and their cargo in the dense and highly complex blood environment. Here, we present a new fluorescence correlation spectroscopy-based method that allows the precise characterization of fluorescently labeled NCs in samples of less than 50 µL of whole blood. The NC size, concentration, and loading efficiency can be measured to evaluate circulation times, stability, or premature drug release. We apply the new method to follow the fate of pH-degradable fluorescent cargo-loaded nanogels in the blood of live mice for periods of up to 72 h.


Assuntos
Portadores de Fármacos , Nanopartículas , Animais , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Camundongos , Micelas , Nanopartículas/química , Espectrometria de Fluorescência
15.
ACS Polym Au ; 2(5): 371-379, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36855582

RESUMO

Herein, N-heterocyclic olefins (NHOs) are utilized as catalysts for the ring-opening polymerization (ROP) of functional aliphatic carbonates. This emerging class of catalysts provides high reactivity and rapid conversion. Aiming for the polymerization of monomers with high side chain functionality, six-membered carbonates derived from 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) served as model compounds. Tuning the reactivity of NHO from predominant side chain transesterification at room temperature toward ring-opening at lowered temperatures (-40 °C) enables controlled ROP. These refined conditions give narrowly distributed polymers of the hydrophobic carbonate 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one (MTC-OBn) (D < 1.30) at (pseudo)first-order kinetic polymerization progression. End group definition of these polymers demonstrated by mass spectrometry underlines the absence of side reactions. For the active ester monomer 5-methyl-5-pentafluorophenyloxycarbonyl-1,3-dioxane-2-one (MTC-PFP) with elevated side chain reactivity, a cocatalysis system consisting of NHO and the Lewis acid magnesium iodide is required to retune the reactivity from side chains toward controlled ROP. Excellent definition of the products (D < 1.30) and mass spectrometry data demonstrate the feasibility of this cocatalyst approach, since MTC-PFP has thus far only been polymerized successfully using acidic catalysts with moderate control. The broad feasibility of our findings was further demonstrated by the synthesis of block copolymers for bioapplications and their successful nanoparticular assembly. High tolerability of NHO in vitro with concentrations ranging up to 400 µM (equivalent to 0.056 mg/mL) further emphasize the suitability as a catalyst for the synthesis of bioapplicable materials. The polycarbonate block copolymer mPEG44-b-poly(MTC-OBn) enables physical entrapment of hydrophobic dyes in sub-20 nm micelles, whereas the active ester block copolymer mPEG44-b-poly(MTC-PFP) is postfunctionalizable by covalent dye attachment. Both block copolymers thereby serve as platforms for physical or covalent modification of nanocarriers for drug delivery.

16.
Macromol Biosci ; 22(2): e2100299, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34791790

RESUMO

With the advent of chemical strategies that allow the design of smart bioconjugates, peptide- and protein-drug conjugates are emerging as highly efficient therapeutics to overcome limitations of conventional treatment, as exemplified by antibody-drug conjugates (ADCs). While targeting peptides serve similar roles as antibodies to recognize overexpressed receptors on diseased cell surfaces, peptide-drug conjugates suffer from poor stability and bioavailability due to their low molecular weights. Through a combination of a supramolecular protein-based assembly platform and a pH-responsive linker, the authors devise herein the convenient assembly of a trivalent protein-drug conjugate. The conjugate should ideally possess distinct features of ADCs such as 1) recognition sites that recognize cell receptor and are arranged on 2) distinct locations on a high molecular weight protein scaffold, 3) a stimuli-responsive linker, as well as 4) an attached payload such as a drug molecule. These AD-like conjugates target cancer cells that overexpress somatostatin receptors, can enable controlled release in the microenvironment of cancer cells through a new pH-responsive biotin linker, and exhibit stability in biological media.


Assuntos
Antineoplásicos , Imunoconjugados , Anticorpos Monoclonais/química , Antígenos , Antineoplásicos/química , Biotina , Concentração de Íons de Hidrogênio , Imunoconjugados/química , Imunoconjugados/farmacologia
17.
ACS Nano ; 15(9): 15191-15209, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34431291

RESUMO

Despite considerable progress in the design of multifunctionalized nanoparticles (NPs) that selectively target specific cell types, their systemic application often results in unwanted liver accumulation. The exact mechanisms for this general observation are still unclear. Here we asked whether the number of cell-targeting antibodies per NP determines the extent of NP liver accumulation and also addressed the mechanisms by which antibody-coated NPs are retained in the liver. We used polysarcosine-based peptobrushes (PBs), which in an unmodified form remain in the circulation for >24 h due to the absence of a protein corona formation and low unspecific cell binding, and conjugated them with specific average numbers (2, 6, and 12) of antibodies specific for the dendritic cell (DC) surface receptor, DEC205. We assessed the time-dependent biodistribution of PB-antibody conjugates by in vivo imaging and flow cytometry. We observed that PB-antibody conjugates were trapped in the liver and that the extent of liver accumulation strongly increased with the number of attached antibodies. PB-antibody conjugates were selectively captured in the liver via Fc receptors (FcR) on liver sinusoidal endothelial cells, since systemic administration of FcR-blocking agents or the use of F(ab')2 fragments prevented liver accumulation. Cumulatively, our study demonstrates that liver endothelial cells play a yet scarcely acknowledged role in liver entrapment of antibody-coated NPs and that low antibody numbers on NPs and the use of F(ab')2 antibody fragments are both sufficient for cell type-specific targeting of secondary lymphoid organs and necessary to minimize unwanted liver accumulation.


Assuntos
Nanopartículas , Receptores Fc , Células Endoteliais , Fígado , Distribuição Tecidual
19.
J Am Chem Soc ; 143(26): 9872-9883, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34166595

RESUMO

Small-molecular Toll-like receptor 7/8 (TLR7/8) agonists hold promise as immune modulators for a variety of immune therapeutic purposes including cancer therapy or vaccination. However, due to their rapid systemic distribution causing difficult-to-control inflammatory off-target effects, their application is still problematic, in particular systemically. To address this problem, we designed and robustly fabricated pH-responsive nanogels serving as versatile immunodrug nanocarriers for safe delivery of TLR7/8-stimulating imidazoquinolines after intravenous administration. To this aim, a primary amine-reactive methacrylamide monomer bearing a pendant squaric ester amide is introduced, which is polymerized under controlled RAFT polymerization conditions. Corresponding PEG-derived squaric ester amide block copolymers self-assemble into precursor micelles in polar protic solvents. Their cores are amine-reactive and can sequentially be transformed by acid-sensitive cross-linkers, dyes, and imidazoquinolines. Remaining squaric ester amides are hydrophilized affording fully hydrophilic nanogels with profound stability in human plasma but stimuli-responsive degradation upon exposure to endolysosomal pH conditions. The immunomodulatory behavior of the imidazoquinolines alone or conjugated to the nanogels was demonstrated by macrophages in vitro. In vivo, however, we observed a remarkable impact of the nanogel: After intravenous injection, a spatially controlled immunostimulatory activity was evident in the spleen, whereas systemic off-target inflammatory responses triggered by the small-molecular imidazoquinoline analogue were absent. These findings underline the potential of squaric ester-based, pH-degradable nanogels as a promising platform to permit intravenous administration routes of small-molecular TLR7/8 agonists and, thus, the opportunity to explore their adjuvant potency for systemic vaccination or cancer immunotherapy purposes.


Assuntos
Adjuvantes Imunológicos/química , Ésteres/química , Nanogéis/química , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Animais , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Imunoterapia , Camundongos Endogâmicos BALB C , Micelas , Imagem Óptica , Polimerização , Polímeros/química
20.
Adv Sci (Weinh) ; 8(10): 2004574, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34026453

RESUMO

Tumor-associated macrophages (TAMs) promote the immune suppressive microenvironment inside tumors and are, therefore, considered as a promising target for the next generation of cancer immunotherapies. To repolarize their phenotype into a tumoricidal state, the Toll-like receptor 7/8 agonist imidazoquinoline IMDQ is site-specifically and quantitatively coupled to single chain antibody fragments, so-called nanobodies, targeting the macrophage mannose receptor (MMR) on TAMs. Intravenous injection of these conjugates result in a tumor- and cell-specific delivery of IMDQ into MMRhigh TAMs, causing a significant decline in tumor growth. This is accompanied by a repolarization of TAMs towards a pro-inflammatory phenotype and an increase in anti-tumor T cell responses. Therefore, the therapeutic benefit of such nanobody-drug conjugates may pave the road towards effective macrophage re-educating cancer immunotherapies.


Assuntos
Imidazóis/química , Neoplasias Pulmonares/tratamento farmacológico , Receptor de Manose/imunologia , Quinolinas/química , Anticorpos de Domínio Único/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Modelos Animais de Doenças , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Glicoproteínas de Membrana/agonistas , Camundongos Endogâmicos C57BL , Camundongos Knockout , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia , Receptor 6 Toll-Like/agonistas , Receptor 7 Toll-Like/agonistas , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...